Approximate low-rank factorization with structured factors

نویسندگان

  • Ivan Markovsky
  • Mahesan Niranjan
چکیده

An approximate rank revealing factorization problem with structure constraints on the normalized factors is considered. Examples of structure, motivated by an application in microarray data analysis, are sparsity, nonnegativity, periodicity, and smoothness. In general, the approximate rank revealing factorization problem is nonconvex. An alternating projections algorithm is developed, which is globally convergent to a locally optimal solution. Although the algorithm is developed for a specific application in microarray data analysis, the approach is applicable to other types of structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices

Given a symmetric positive definite matrix A, we compute a structured approximate Cholesky factorization A ≈ RTR up to any desired accuracy, where R is an upper triangular hierarchically semiseparable (HSS) matrix. The factorization is stable, robust, and efficient. The method compresses off-diagonal blocks with rank-revealing orthogonal decompositions. In the meantime, positive semidefinite te...

متن کامل

Structured Low-Rank Matrix Factorization: Global Optimality, Algorithms, and Applications

Recently, convex formulations of low-rank matrix factorization problems have received considerable attention in machine learning. However, such formulations often require solving for a matrix of the size of the data matrix, making it challenging to apply them to large scale datasets. Moreover, in many applications the data can display structures beyond simply being low-rank, e.g., images and vi...

متن کامل

Factorization Approach to Structured Low-Rank Approximation with Applications

We consider the problem of approximating an affinely structured matrix, for example a Hankel matrix, by a low-rank matrix with the same structure. This problem occurs in system identification, signal processing and computer algebra, among others. We impose the low-rank by modeling the approximation as a product of two factors with reduced dimension. The structure of the low-rank model is enforc...

متن کامل

Robust Structured Multifrontal Factorization and Preconditioning for Discretized Pdes

We present an approximate structured factorization method which is efficient, robust, and also relatively insensitive to ill conditioning, high frequencies, or wavenumbers for some discretized PDEs. Given a sparse symmetric positive definite discretized matrix A, we compute a structured approximate factorization A ≈ LLT with a desired accuracy, where L is lower triangular and data sparse. This ...

متن کامل

Fast Nonnegative Matrix Factorization with Rank-one ADMM

Nonnegative matrix factorization (NMF), which aims to approximate a data matrix with two nonnegative low rank matrix factors, is a popular dimensionality reduction and clustering technique. Due to the non-convex formulation and the nonnegativity constraints over the two low rank matrix factors (with rank r > 0), it is often difficult to solve NMF efficiently and accurately. Recently, the altern...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2010